Azərbaycanca  AzərbaycancaБеларуская  БеларускаяDeutsch  DeutschEnglish  EnglishFrançais  FrançaisҚазақ  ҚазақLietuvių  LietuviųРусский  Русскийภาษาไทย  ภาษาไทยTürkçe  TürkçeУкраїнська  Українська
Pagalba
www.global-lt3.nina.az
  • Pradžia
  • Vikipedija
  • Muzika

Šiam straipsniui ar jo daliai reikia daugiau nuorodų į patikimus šaltinius Jūs galite padėti Vikipedijai įrašydami tinka

Daugdara

  • Pagrindinis puslapis
  • Vikipedija
  • Daugdara
 image  Šiam straipsniui ar jo daliai reikia daugiau nuorodų į patikimus šaltinius.
Jūs galite padėti Vikipedijai įrašydami tinkamas išnašas ar nuorodas į patikimus šaltinius.

Daugdara – , kurios kiekvieno taško aplinka yra artima euklidinei erdvei. Tiksliau tariant, kiekvienas n-matės daugdaros taškas turi aplinką, homeomorfišką n-matei euklidinei erdvei. Tiesė ir apskritimas yra vienmatė daugdara, bet aštuoniukė – ne. Dvimatės daugdaros labai dažnai vadinamos paviršiais. Pastarųjų pavyzdžiai yra plokštuma, sfera, toras; visos šios trys daugdaros gali būti realios trimatės erdvės įdėtimis (angl. embedding), bet kai kurios tokiomis būti negali: Kleino butelis ir realioji projekcinė plokštuma.

  • Neformaliai, daugdara yra [kokia nors] erdvė, „sumodeliuota“ euklidinėje erdvėje.
  • Formaliai, topologinė daugdara yra antroji skaičiuojamoji , lokaliai homeomorfiška euklidinei erdvei.
image
Realioji projekcinė plokštuma yra dvimatė daugdara, kurios neįmanoma atvaizduoti trimatėje erdvėje taip, kad ji nekirstų pati savęs (čia pavaizduota kaip Boy paviršius).
image
Kad būtų atvaizduoti visi Žemės paviršiaus taškai, reikia (mažiausiai) dviejų žemėlapių. Čia atlikta Žemės rutulio dekompozicija į du žemėlapius, kurių centras atitinkamai yra šiaurės ir pietų ašigalis.
image
Ant daugdaros (pavyzdžiui, sferos) nubrėžto didelio trikampio vidinių kampų suma gali ir nebūti lygi 180 laipsnių (skirtingai nuo trikampio euklidinėje erdvėje). Analogiško mažo trikampio kampų suma bus apytiksliai lygi 180 laipsnių, nes lokaliai daugdara atrodo kaip euklidinė erdvė.

Nors kiekvieno daugdaros taško artimoji aplinka yra visiškai artima euklidinei erdvei, globaliu mastu taip nėra. Pavyzdžiui, visas sferos paviršius nėra euklidinė erdvė, bet atskiri jos regionai gali būti atvaizduoti euklidinėje plokštumoje (sakykime, žemėlapyje). Daugdaros kontekste tokia „projekcija“ vadinama atvaizdžiu. Kai regionas pakliūva į du gretimus atvaizdžius, gaunamas jų vaizdas nebūna visiškai identiškas, todėl reikalinga tam tikra transformacija, susiejanti tuos pačius taškus, kuri vadinama perėjimo schema (angl. transition map).

Daugdaros samprata užima svarbią vietą šiuolaikinėje geometrijoje ir matematinėje fizikoje, nes leidžia painias struktūras aprašyti sąlyginai gerai suprantamų euklidinės erdvės savybių parametrais. Daugdaros natūraliai randasi kaip sprendinių aibės, kai nagrinėjamos lygčių sistemos ir funkcijų grafai.

Istorija

Neeuklidinių erdvių tyrimų pradžia laikytinas 1733 m. paskelbtas Džiovanio Sakerio (Giovanni Girolamo Saccheri) darbas. Vėliau (jau po 100 metų) juos plėtojo Nikolajus Lobačevskis (Никола́й Ива́нович Лобаче́вский), (János Bolyai) ir Bernhardas Rymanas. Būtent Rymanas išplėtojo paviršiaus sampratą ir apibendrino ją n-matėms erdvėms. Jis pirmas panaudojo daugdaros sąvoką vokiškai – Mannigfaltigkeit, kuri vėliau buvo išversta į anglų kalbą – manifold, o prancūzų kalboje imta naudoti variété. Rymanas daugdara (Mannigfaltigkeit) pavadino aibę visų įmanomų kintamojo reikšmių, nes kintamasis, paprastai tariant, gali įgauti daug reikšmių.

Glodžios daugdaros

Pagrindinis straipsnis – .

Topologinei daugdarai M{\displaystyle M}image be krašto, atvaizdis φ{\displaystyle \varphi }image iš atviro poaibio U⊂M{\displaystyle U\subset M}image į atvirą Rn{\displaystyle \mathbb {R} ^{n}}image aibę vadinamas homeomorfizmu. Atvaizdžių aibė, dengianti visą M{\displaystyle M}image yra vadinama atlasu.

Jei du atvaizdžiai φ{\displaystyle \varphi }image ir ψ{\displaystyle \psi }image persikerta kuriame nors M{\displaystyle M}image taške, jų kompozicija φ∘ψ−1{\displaystyle \varphi \circ \psi ^{-1}}image apibrėžia „perėjimo“ (angl. transition) atvaizdį iš atviro Rn{\displaystyle \mathbb {R} ^{n}}image poaibio į atvirą Rn{\displaystyle \mathbb {R} ^{n}}image poaibį. Jei visi perėjimo atvaizdžiai yra Ck{\displaystyle C^{k}}image klasės (t. y. k{\displaystyle k}image-kartų tolygiai diferencijuojamos funkcijos), atlasas vadinamas Ck{\displaystyle C^{k}}image atlasu.

Išnašos

  1. Robert M. Wald (1984). General Relativity. University of Chicago Press. p. 11. ISBN 0-226-87033-2.
  2. daugdara – rus. многообразие; angl. manifold, variety (Matematikos terminų žodynas, Vilnius, 1994)
image   Šis su matematika susijęs straipsnis yra nebaigtas. Jūs galite prisidėti prie Vikipedijos papildydami šį straipsnį.

Autorius: www.NiNa.Az

Išleidimo data: 19 Gegužė, 2025 / 06:00

vikipedija, wiki, lietuvos, knyga, knygos, biblioteka, straipsnis, skaityti, atsisiųsti, nemokamai atsisiųsti, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, pictu, mobilusis, porn, telefonas, android, iOS, apple, mobile telefl, +18, samsung, iPhone, xiomi, xiaomi, redmi, pornografija, honor, oppo, Nokia, Sonya, mi, pc, web, kompiuteris, xxx, sex

Naujausi straipsniai
  • Gegužė 18, 2025

    Naruhito

  • Gegužė 18, 2025

    NASA

  • Gegužė 18, 2025

    Mėnulis

  • Gegužė 18, 2025

    Mylia

  • Gegužė 18, 2025

    Musulmonai

www.NiNa.Az - Studija

  • Vikipedija
  • Muzika
Susisiekite
Kalbos
Susisiekite su mumis
DMCA Sitemap
© 2019 nina.az - Visos teisės saugomos.
Autorių teisės: Dadash Mammadov
Nemokama svetainė, kurioje galima dalytis duomenimis ir failais iš viso pasaulio.
Viršuje