Azərbaycanca  AzərbaycancaБеларуская  БеларускаяDeutsch  DeutschEnglish  EnglishFrançais  FrançaisҚазақ  ҚазақLietuvių  LietuviųРусский  Русскийภาษาไทย  ภาษาไทยTürkçe  TürkçeУкраїнська  Українська
Pagalba
www.global-lt3.nina.az
  • Pradžia
  • Vikipedija
  • Muzika

Kitos reikšmės Pagreitis reikšmės Pagreitis žym raide a fizikoje apibrėžiamas kaip greičio pokytis arba išvestinė laiko

Pagreitis

  • Pagrindinis puslapis
  • Vikipedija
  • Pagreitis
image Kitos reikšmės – Pagreitis (reikšmės).

Pagreitis (žym. raide a) – fizikoje apibrėžiamas kaip greičio pokytis (arba išvestinė) laiko atžvilgiu. SI sistemoje pagreičio dimensija m/s². Matuojamas naudojant akselerometrą.

Žalioji linija rodo greičio-laiko grafiko nuolydį tam tikrame taške, kur dvi linijos liečiasi. Nuolydis ir yra pagreitis tame taške.

Pagreičio sąvoką pradėjo vartoti Oksfordo universiteto profesorius Viljamas Heitsberis (W. Heytesbury) XIV a.

Jei pagreitis teigiamas, judėjimas greitėjantis, jei pagreitis neigiamas – greitis mažėja. Esant pagreičiui lygiam nuliui, judėjimas tolyginis ir tiesiaeigis.

Pagreitis mechanikoje dažnai skaičiuojamas paprasčiausiu būdu greičio pokytį padalinus iš laiko, per kurį tas pokytis įvyko:

a=vgal−vpradΔt,{\displaystyle a={\frac {v_{gal}-v_{prad}}{\Delta t}},}{\displaystyle a={\frac {v_{gal}-v_{prad}}{\Delta t}},}
kur
vgal{\displaystyle v_{gal}}{\displaystyle v_{gal}} – galinis greitis;
vprad{\displaystyle v_{prad}}{\displaystyle v_{prad}} – pradinis greitis;
Δt{\displaystyle \Delta t}{\displaystyle \Delta t} – praėjęs laikas.

Bendru atveju pagreitis apibrėžiamas išvestine:

a=dvdt{\displaystyle a={\frac {dv}{dt}}}{\displaystyle a={\frac {dv}{dt}}}
čia dv, dt yra pakankamai maži laiko ir greičio pokyčiai jog laiko tarpe dt greitį būtų galima laikyti pastoviu:
a=limΔt→0vgal−vpradΔt{\displaystyle a=\lim _{\Delta t\to 0}{\frac {v_{gal}-v_{prad}}{\Delta t}}}{\displaystyle a=\lim _{\Delta t\to 0}{\frac {v_{gal}-v_{prad}}{\Delta t}}}

Pagreičio radimas grafiniu būdu

image
Pagreičio apskaičiavimas greičio grafiku (greičio v kitimas bėgant laikui t). A – pradinis greitis, B – galutinis greitis.

Pagreitį galima apskaičiuoti ir remiantis greičio grafiku Atkarpos BC ilgį, kuris lygus greičio pokyčiui v−vprad{\displaystyle v-v_{prad}}image, padaliję iš atkarpos AC ilgio, atitinkančio laiką t, gausime pagreičio vertę.

Jeigu kūnas juda pastoviu pagreičiu a (pavyzdžiui, laisvai krentantis akmuo), jo greitis didėja tiesiškai. Tarkime per pirmą sekundę akmens įsibėgėjo iki 1 m/s, po antros sekundės greitis jau 2 m/s, po trečios – 3 m/s ir t. t. Grafike tai matoma kaip tiesė, kylanti kampu nuo t ašies. Kuo didesnis pagreitis, tuo statesnis šis kampas.

Nueitas kelias S yra vidutinio greičio ir praėjusio laiko sandauga:

S=vprad+vgal2t={\displaystyle S={{v_{prad}+v_{gal}} \over 2}t=}image vprad+(vprad+a⋅t)2t={\displaystyle {{v_{prad}+({v_{prad}+a\cdot t)}} \over 2}t=}image vprad⋅t+a⋅t22{\displaystyle v_{prad}\cdot t+{{a\cdot t^{2}} \over 2}}image

Tarkim, mūsų pavyzdyje po penkių sekundžių S=t⋅v=5(0+5)/2=12,5{\displaystyle S=t\cdot v=5(0+5)/2=12,5}image m. Grafiškai, nueitas kelias yra geometrinės figūros plotas. Šios figūros apatinė kraštinė yra laiko ašis (t), kairioji kraštinė yra greičio ašis (v), dešioji kraštinį lygiagreti kairiajai kerta galutinį laiką atitinkančius taškus (B, C). Viršutinė kraštinė yra greičio kitimo kreivė laikui bėgant. Mūsų atveju (greitis kinta tiesiškai) ši figūra yra stačioji trapecija, ir nueito kelio formulė sutampa su šios trapecijos ploto formule. Figūros ploto taisyklė lieka teisinga ir jei greitis kinta kaip nors kitaip (tarkim kvadratiškai), tačiau tada plotui skaičiuoti reikia sudėtingesnių būdų.

Kreivaeigis judėjimas

image
Pagreičiai kreivaeigiame judėjime.

Kai judėjimo trajektorija nėra tiesė, išskiriamos dvi pagreičio komponentės: normalinis ir liestinis (tangentinis) pagreitis.

Normalinio pagreičio an priežastis – greičio krypties kitimas. Šios pagreičio komponentės kryptis nukreipta į momentinį trajektorijos kreivumo centrą (trajektorijos ) ir yra statmena momentinio greičio vektoriui. Sukamajame judėjime

an=−v2rn^,{\displaystyle \mathbf {a_{n}} =-{\frac {v^{2}}{r}}\mathbf {\hat {n}} ,}image

čia n – normalės vektorius.

Skaliarinė išraiška:

an=−v2r=ω2r{\displaystyle a_{n}=-{\frac {v^{2}}{r}}=\omega ^{2}r}image

Liestinio pagreičio (tangentinio pagreičio) at priežastis – greičio modulio kitimas. Tangentinio pagreičio kryptis sutampa su momentinio greičio kryptimi, trajektorijos liestine, jei judėjimas greitėjantis arba priešingas jam, jei judėjimas lėtėjantis:

aτ=d|v|dtτ^{\displaystyle \mathbf {a_{\tau }} ={\frac {d|\mathbf {v} |}{dt}}{\hat {\tau }}}image

čia

τ^=v|v|{\displaystyle {\hat {\tau }}={\frac {\mathbf {v} }{|\mathbf {v} |}}}image

Dinamikoje

Klasikinėje mechanikoje antrasis Niutono dėsnis formuluojamas taip: kūną veikiančių jėgų atstojamoji F yra lygi kūno masės ir pagreičio sandaugai:

F=ma{\displaystyle \mathbf {F} =m\mathbf {a} }image

Šaltiniai

  1. Algimantas Karpus. Mechanika: paskaitos. Vilnius: Enciklopedija, 2003, 19 p. ISBN 9986-433-29-0.

Kinematika

← Integravimas ... Diferenciavimas →
Poslinkis | Greitis | Pagreitis

image   Šis straipsnis apie matavimo vienetus yra nebaigtas. Jūs galite prisidėti prie Vikipedijos papildydami šį straipsnį.

Autorius: www.NiNa.Az

Išleidimo data: 21 Gegužė, 2025 / 07:08

vikipedija, wiki, lietuvos, knyga, knygos, biblioteka, straipsnis, skaityti, atsisiųsti, nemokamai atsisiųsti, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, pictu, mobilusis, porn, telefonas, android, iOS, apple, mobile telefl, +18, samsung, iPhone, xiomi, xiaomi, redmi, pornografija, honor, oppo, Nokia, Sonya, mi, pc, web, kompiuteris, xxx, sex

Naujausi straipsniai
  • Gegužė 19, 2025

    Liepa

  • Gegužė 20, 2025

    Liepos 9

  • Gegužė 20, 2025

    Liepos 8

  • Gegužė 20, 2025

    Liepos 7

  • Gegužė 20, 2025

    Liepos 6

www.NiNa.Az - Studija

  • Vikipedija
  • Muzika
Susisiekite
Kalbos
Susisiekite su mumis
DMCA Sitemap
© 2019 nina.az - Visos teisės saugomos.
Autorių teisės: Dadash Mammadov
Nemokama svetainė, kurioje galima dalytis duomenimis ir failais iš viso pasaulio.
Viršuje