Trapecija (gr. τραπέζιον – staliukas) – iškilusis keturkampis, kurio dvi priešingosios kraštinės lygiagrečios, o kitos dvi kraštinės gali būti nelygiagrečios. Lygiagrečios kraštinės vadinamos trapecijos pagrindais, kitos dvi kraštinės – šoninėmis kraštinėmis. 1 pav. pavaizduotos trapecijos kraštinės BC ir AD – trapecijos pagrindai, AB ir CD – trapecijos šoninės kraštinės. Iš taškų B ir C nuleisti statmenys BK ir CL vadinami trapecijos aukštine. atkarpa, kuri jungia šoninių kraštinių vidurio taškus, vadinama trapecijos vidurio linija. 1 pav. pavaizduotos trapecijos vidurio linija yra EF.

Aplink trapeciją apibrėžti apskritimą galima tik tada, jeigu ji yra lygiašonė.
Trapecijų rūšys
Lygiašonė trapecija

Trapecija, kurios šoninės kraštinės lygios, vadinama lygiašonė. 2 pav. pavaizduota trapecija ABCD yra lygiašonė, nes AB=CD. Lygiašonės trapecijos kampai prie kiekvieno iš pagrindų yra lygūs:
laipsnių.
laipsnių.
Jeigu į lygiašonę trapeciją galima įbrėžti apskritimą, tai jos aukštinė h yra lygi pagrindų a ir b geometriniam vidurkiui:
Stačioji trapecija
Trapecija, kurios viena šoninė kraštinė statmena pagrindui, vadinama stačiąja. 3 pav. pavaizduota stačioji trapecija ABCD, kurios

Trapecijos savybės
- Keturkampis yra trapecija tada ir tik tada, jei yra bent viena pora greta esančių kampų, kurių suma lygi 180°.
- Kita būtina ir pakankama sąlyga yra jog įstrižainės dalija viena kitą tuo pačiu santykiu. Šis santykis toks pats kaip ir tarp pagrindų ilgių.
- Linija, išvesta per šoninių kraštinių vidurio taškus (vidurinė linija), yra lygiagreti pagrindams. Jos ilgis yra pagrindų ilgių aritmetinis vidurkis.
Trapecijos elementų žymėjimas
4 pav. pavaizduoti visi pagrindiniai trapecijos elementai. AB=b, DC=a – trapecijos ABCD pagrindai; DA=d, BC=c – trapecijos šoninės kraštinės; GH=m – trapecijos vidurio linija; EF – atkarpa, einanti per įstrižainių susikirtimo tašką ir lygiagreti pagrindams; AK=h – aukštinė; BD=,AC=
– trapecijos įstrižainės; φ – kampas tarp įstrižainių.

Trapecijos vidurio linija, perimetras, plotas
Pastaba: Visos žemiau pateiktos formulės remiasi 4 pav. žymėjimais (žr. Trapecijos elementų žymėjimas).
Trapecijos vidurinė linija lygiagreti pagrindams ir lygi jų sumos pusei:
,
;
Trapecijos įstrižainių radimas:
;
Atkarpos lygiagrečios pagrindams ir einančios per įstrižainių susikirtimo tašką radimas:
Trapecijos perimetras ir pusperimetris:
;
Trapecijos plotas lygus vidurinės linijos ir aukštinės sandaugai:
,
Trapecijos plotas lygus jos pagrindų sumos pusei ir aukštinės sandaugai.
,
čia a ir b – lygiagrečių kraštinių ilgiai, h – aukštinė. Kitaip tariant (žr. savybes) jis lygus vidurinės linijos ir aukštinės ilgių sandaugai.
Jei aukštinė nežinoma, tačiau žinomi visų kraštinių ilgiai, trapecijos plotą galima rasti pagal formulę
čia a, b – lygiagrečių kraštinių ilgiai, c, d – kitų dviejų kraštinių ilgiai.
Trapecijos plotas lygus jos įstrižainių ir sinuso kampo tarp jų pusei:
Šaltiniai
- Petras Vaškas. Trapecija. Visuotinė lietuvių enciklopedija, T. XXIV (Tolj–Veni). – Vilnius: Mokslo ir enciklopedijų leidybos institutas, 2015
- Birutė Gražulevičienė. Mokyklinės matematikos žinynas. – Vilnius: Leidybos centras, 1997. – 84 p. ISBN 9986-03-264-4
- Vaidotas Mockus. Geometrijos žinynas moksleiviams. – Šiauliai: Šiaulių pedagoginis institutas, 1996. – 71 p. ISBN 9986-38-010-3
- Vaidotas Mockus, Algidė Jocaitė. Mokyklinio geometrijos kurso kartojimo medžiaga. – Šiauliai: V.Mockaus įmonė, 2002. – 100 p. ISBN 9955-9379-7-1
- Autorių kolektyvas. Matematika. Vadovėlis XI-XII klasei. Suaugusiųjų ir savarankiškam mokymuisi. – Kaunas: Šviesa, 2007. – 189 p. ISBN 5-430-04629-9
Nuorodos
- Eric W. Weisstein, Trapezoid, MathWorld. (angl.)
Autorius: www.NiNa.Az
Išleidimo data:
vikipedija, wiki, lietuvos, knyga, knygos, biblioteka, straipsnis, skaityti, atsisiųsti, nemokamai atsisiųsti, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, pictu, mobilusis, porn, telefonas, android, iOS, apple, mobile telefl, +18, samsung, iPhone, xiomi, xiaomi, redmi, pornografija, honor, oppo, Nokia, Sonya, mi, pc, web, kompiuteris, xxx, sex